برهان رياضي
صفحة 1 من اصل 1
برهان رياضي
في الرياضيات ، البرهان عبارة عن إثبات ، يستند على بدهيات axiom معينة ، لعبارة رياضية أو علاقة رياضية بأنها صحيحية منطقيا حكما في ظل هذه المجموعة من البدهيات . البرهان الرياضي إذا عبارة عن حجة argument أو تعليل منطقي ، ليس تجريبيا . ضمن هذا التعريف فإن مقولة أو عبارة رياضية يجب ان تبرهن على صحتها في جميع الظروف و الحالات قبل أن يتم اعتبارها مبرهنة theorem رياضية . أما المقولة غير المبرهنة التي تلقى نوعا من الدعم التجريبي فتعرف بالحدسية conjecture . افتراضيا في جميع فروع الرياضيات ، تكون البدهيات المفترضة هي بدهيات ZFC أي Zermelo–Fraenkel set theory (و هي نظرية مجموعات زيرميلو-فرينكل مع بدهيات الاختيار) ما لم يشار إلى بدهيات مختلفة . نظرية مجموعة زيرميلو-فرينكل تقوم بمشاكلة formalize (أي تجعله شكليا formal ) الحدس الرياضي حول نظرية المجموعات ، و في نفس الوقت تقوم نظرية المجموعات بوصف الجبر و التحليل الرياضي .
شريفه حمد القصيبي- زائر
صفحة 1 من اصل 1
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى